Introduction To Git

Session 1: Git Basics



Outline

Installing Git

Creating Your Git Identity
Getting Help On Git Commands
Create a Git repository

Clone a Git repository

Saving Changes

View Project History

Managing Branches



Installing Git

Installation:
Debian/Ubuntu (apt-get):
$ sudo apt-get update
$ sudo apt-get install git
Fedora (dnf/yum):
$ sudo dnf install git
OR
$ sudo yum install git
Verify installation:

$ git --version



Creating Your Git Identity

Every committer is identified by name + email address combination
These details are associated with every commit you make
Configure your Git name and email using the following commands, ,
replacing Brown's details with your own:

$ git config --global user.name "Brown Msiska"

$ git config --global user.email "bmsiska@gmail.com"”



Getting Help On Git Commands

*You can get documentation for a command such as git log with:

$ man git-log
OR
$ git help log



Create a Git Repository

The git init command creates a new Git repository
It can be used to convert an existing, unversioned project to a Git
repository
Or initialize a new empty repository
To turn a current directory into a Git repo:
git init
To create a new empty repo:

git init <directory>



Clone a Git Repository

The git clone command copies an existing Git repository.

To clone a repository located at <repo> into current directory:
git clone <repo>

To clone a repository located at <repo> into a specific directory:
git clone <repo> <directory>

The original repository can be located on the local filesystem or on

a remote machine accessible via HTTP or SSH.



Saving Changes

The git add and git commit commands are fundamental to the Git
workflow

They are the means to record changes into the repository.
Developing a project revolves around the basic edit/stage/commit
pattern

you edit your files in the working directory

Then you stage changes with git add

Then you commit it to the project history with git commit

In conjunction with these commands, you'll also need git status to

view the state of the working directory and the staging area



Git Add Command

The git add command adds a change in the working directory to
the staging area
It tells Git what changes to include in the next commit.
To add all changes in a file:
git add <file>
To add all changes in a directory:
git add <directory>
To add all changes in the working directory:

git add .



Git Commit Command

The git commit command commits the staged snapshot to the
project history
To commit staged changes:
git commit
This prompts you for a commit message
To commit with a message:
git commit -m "<message>"
Alternatively, you can use:
git commit -a
To commit changes to all tracked (those added before) without

running git add beforehand



View Repository History

- At any point you can view the history of your changes using:

git log

- Or

git log --oneline



Managing Branches

A single Git repository can maintain multiple branches of
development
To create a new branch named "experimental”, use:
git branch experimental
To list branches in your repository:
git branch
The current branch will be preceded by an asterisk
To switch to a specific branch:
git checkout <branch>
To merge with changes in another branch:

git merge <branch-to-merge-with>



Managing Branches

To delete a branch use:

git branch -d experimental
This will produce an error if the branch has not been merged
To force delete (for a failed experiment, for example):

git branch -D experimental



Practice + Break Time



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

