
Introduction To Git

Session 1: Git Basics



Outline

 Installing Git

 Creating Your Git Identity

 Getting Help On Git Commands

 Create a Git repository

 Clone a Git repository

 Saving Changes

 View Project History

 Managing Branches



Installing Git

 Installation:

 Debian/Ubuntu (apt-get):

$ sudo apt-get update

$ sudo apt-get install git

 Fedora (dnf/yum):

$ sudo dnf install git

OR

$ sudo yum install git

 Verify installation:

$ git --version



Creating Your Git Identity

 Every committer is identified by name + email address combination

 These details are associated with every commit you make

 Configure your Git name and email using the following commands, , 

replacing Brown's details with your own:

$ git config --global user.name "Brown Msiska"

$ git config --global user.email "bmsiska@gmail.com"



Getting Help On Git Commands

 You can get documentation for a command such as git log with:

$ man git-log

OR

$ git help log



Create a Git Repository

 The git init command creates a new Git repository

 It can be used to convert an existing, unversioned project to a Git 

repository 

 Or initialize a new empty repository

 To turn a current directory into a Git repo:

git init

 To create a new empty repo:

git init <directory> 



Clone a Git Repository

 The git clone command copies an existing Git repository.

 To clone a repository located at <repo> into current directory:

git clone <repo>

 To clone a repository located at <repo> into a specific directory:

git clone <repo> <directory>

 The original repository can be located on the local filesystem or on 

a remote machine accessible via HTTP or SSH.



Saving Changes

 The git add and git commit commands are fundamental to the Git 

workflow

 They are the means to record changes into the repository.

 Developing a project revolves around the basic edit/stage/commit 

pattern

 you edit your files in the working directory

 Then you stage changes with git add

 Then you commit it to the project history with git commit

 In conjunction with these commands, you'll also need git status to 

view the state of the working directory and the staging area



Git Add Command

 The git add command adds a change in the working directory to 

the staging area

 It tells Git what changes to include in the next commit.

 To add all changes in a file:

git add <file>

 To add all changes in a directory:

git add <directory>

 To add all changes in the working directory:

git add .



Git Commit Command

 The git commit command commits the staged snapshot to the 

project history

 To commit staged changes:

git commit

 This prompts you for a commit message

 To commit with a message:

git commit -m "<message>"

 Alternatively, you can use:

git commit -a 

 To commit changes to all tracked (those added before) without 

running git add beforehand



View Repository History

 At any point you can view the history of your changes using:

git log

 Or

git log --oneline



Managing Branches

 A single Git repository can maintain multiple branches of 

development

 To create a new branch named "experimental", use:

git branch experimental

 To list branches in your repository:

git branch

 The current branch will be preceded by an asterisk

 To switch to a specific branch:

git checkout <branch>

 To merge with changes in another branch:

git merge <branch-to-merge-with>



Managing Branches

 To delete a branch use:

git branch -d experimental

 This will produce an error if the branch has not been merged

 To force delete (for a failed experiment, for example):

git branch -D experimental



Practice + Break Time


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

