
Introduction To Git

Session 1: Git Basics



Outline

 Installing Git

 Creating Your Git Identity

 Getting Help On Git Commands

 Create a Git repository

 Clone a Git repository

 Saving Changes

 View Project History

 Managing Branches



Installing Git

 Installation:

 Debian/Ubuntu (apt-get):

$ sudo apt-get update

$ sudo apt-get install git

 Fedora (dnf/yum):

$ sudo dnf install git

OR

$ sudo yum install git

 Verify installation:

$ git --version



Creating Your Git Identity

 Every committer is identified by name + email address combination

 These details are associated with every commit you make

 Configure your Git name and email using the following commands, , 

replacing Brown's details with your own:

$ git config --global user.name "Brown Msiska"

$ git config --global user.email "bmsiska@gmail.com"



Getting Help On Git Commands

 You can get documentation for a command such as git log with:

$ man git-log

OR

$ git help log



Create a Git Repository

 The git init command creates a new Git repository

 It can be used to convert an existing, unversioned project to a Git 

repository 

 Or initialize a new empty repository

 To turn a current directory into a Git repo:

git init

 To create a new empty repo:

git init <directory> 



Clone a Git Repository

 The git clone command copies an existing Git repository.

 To clone a repository located at <repo> into current directory:

git clone <repo>

 To clone a repository located at <repo> into a specific directory:

git clone <repo> <directory>

 The original repository can be located on the local filesystem or on 

a remote machine accessible via HTTP or SSH.



Saving Changes

 The git add and git commit commands are fundamental to the Git 

workflow

 They are the means to record changes into the repository.

 Developing a project revolves around the basic edit/stage/commit 

pattern

 you edit your files in the working directory

 Then you stage changes with git add

 Then you commit it to the project history with git commit

 In conjunction with these commands, you'll also need git status to 

view the state of the working directory and the staging area



Git Add Command

 The git add command adds a change in the working directory to 

the staging area

 It tells Git what changes to include in the next commit.

 To add all changes in a file:

git add <file>

 To add all changes in a directory:

git add <directory>

 To add all changes in the working directory:

git add .



Git Commit Command

 The git commit command commits the staged snapshot to the 

project history

 To commit staged changes:

git commit

 This prompts you for a commit message

 To commit with a message:

git commit -m "<message>"

 Alternatively, you can use:

git commit -a 

 To commit changes to all tracked (those added before) without 

running git add beforehand



View Repository History

 At any point you can view the history of your changes using:

git log

 Or

git log --oneline



Managing Branches

 A single Git repository can maintain multiple branches of 

development

 To create a new branch named "experimental", use:

git branch experimental

 To list branches in your repository:

git branch

 The current branch will be preceded by an asterisk

 To switch to a specific branch:

git checkout <branch>

 To merge with changes in another branch:

git merge <branch-to-merge-with>



Managing Branches

 To delete a branch use:

git branch -d experimental

 This will produce an error if the branch has not been merged

 To force delete (for a failed experiment, for example):

git branch -D experimental



Practice + Break Time


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

